ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Mitchell T. Farmer, Matthew Weathered, Darius Lisowski, Nathan Bremer, Dennis Kilsdonk, Tim Stack, Caleb Tomlin, Chris Plucker, Ed Moreno, Ran Kong, Zhengting Quan, Adam Dix, Seungjin Kim, Mamoru Ishii, Mark Anderson, Andrew Napora
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S148-S164
Technical Paper | doi.org/10.1080/00295639.2022.2052552
Articles are hosted by Taylor and Francis Online.
The objective of the Versatile Test Reactor (VTR) is to enable testing of advanced reactor fuels and materials in a fast spectrum neutron environment. Internal cartridge loop testing capabilities are being developed that will allow the cartridge coolant to be isolated from the reactor coolant. This approach will allow various cartridge coolants to be investigated, thereby maximizing testing capability. A sodium cartridge loop testing capability is being developed by a team that includes Argonne National Laboratory (Argonne) as the laboratory partner, Framatome Inc. as the industrial partner, and Purdue University along with the University of Wisconsin–Madison as university partners. Specific elements of the current work include overall cartridge loop design development that is being led by Framatome, Inc. Coolant chemistry monitoring and control are key elements of any high-pedigree irradiation testing capability; the University of Wisconsin is leading this effort by developing and experimentally verifying methods for achieving this capability in pile. Purdue University is developing a scaling methodology, and on that basis, a thermal-hydraulic testing capability to validate fluid flow and heat transfer models for the cartridge that will be used to support design and safety analysis activities. Argonne has focused on developing and testing technologies specifically targeted at simplifying VTR operations, as well as developing modeling tools to support cartridge loop design and safety analysis. The purpose of this paper is to summarize the current status of the sodium fast reactor cartridge development, including details on the cartridge functional requirements, physical design, chemistry control, operations, and safety.