ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
My Story: John L. Swanson—ANS member since 1978
. . . and in 2019, on his 90th birthday.
Swanson in 1951, the year of his college graduation . . .
My pre-college years were spent in a rural suburb of Tacoma, Wash. In 1947, I enrolled in Reed College, a small liberal arts school in Portland, Ore.; I majored in chemistry and graduated in 1951. While at Reed, I met and married a young lady with whom I would raise 3 children and spend the next 68 years of my life—almost all of them in Richland, Wash., where I still live.
I was fortunate to have a job each of my “college summers” that provided enough money to cover my college costs for the next year; I don’t think that is possible these days. My job was in the kitchen/dining hall of a salmon cannery in Alaska. Room and board were provided and the cannery was in an isolated location, so I could save almost every dollar of my salary.
Tingzhou Fei, Zhaopeng Zhong, Samuel E. Bays, Florent Heidet
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S98-S109
Technical Paper | doi.org/10.1080/00295639.2021.1991760
Articles are hosted by Taylor and Francis Online.
The Versatile Test Reactor (VTR) is currently under development by the U.S. Department of Energy. It will provide very high fast neutron flux irradiation capabilities that are currently unavailable in the United States. Given the increasingly large number of advanced reactor concepts being pursued in recent years, this irradiation testing capability will be essential to support maturation of these designs. Radiation protection is an important part of the VTR design. High neutron fluxes can pose a challenge for radiation protection of the structures and equipment near the reactor core. This paper provides a summary on the status of the radiation protection considerations and shielding analysis performed for VTR under a nominal operating condition. The main radiation sources identified and examined in the study are applicable only under this operating condition. The paper focuses on three areas of radiation protection and shielding: secondary sodium activation in the intermediate heat exchanger, air activation in the reactor vessel auxiliary cooling system, and dose rate above the head access area due to primary sodium activation. VTR design and development are continuously progressing, and as such, the shielding considerations discussed in this paper will evolve alongside the overall VTR design.