ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
My Story: John L. Swanson—ANS member since 1978
. . . and in 2019, on his 90th birthday.
Swanson in 1951, the year of his college graduation . . .
My pre-college years were spent in a rural suburb of Tacoma, Wash. In 1947, I enrolled in Reed College, a small liberal arts school in Portland, Ore.; I majored in chemistry and graduated in 1951. While at Reed, I met and married a young lady with whom I would raise 3 children and spend the next 68 years of my life—almost all of them in Richland, Wash., where I still live.
I was fortunate to have a job each of my “college summers” that provided enough money to cover my college costs for the next year; I don’t think that is possible these days. My job was in the kitchen/dining hall of a salmon cannery in Alaska. Room and board were provided and the cannery was in an isolated location, so I could save almost every dollar of my salary.
Mohinder Singh, Akash Tondon, Bhajan Singh, B. S. Sandhu
Nuclear Science and Engineering | Volume 196 | Number 10 | October 2022 | Pages 1172-1193
Technical Paper | doi.org/10.1080/00295639.2022.2067737
Articles are hosted by Taylor and Francis Online.
This work deals with the evaluation of interaction cross sections, effective atomic number, and effective electron density at gamma photon energies, not available from standard radioisotopes. The Compton scattering technique is used to obtain the required gamma energies within a specific range of energies from 241.8 to 401.8 keV to perform the radiation measurements. Radiation interaction parameters of some inorganic compounds (high-Z rare-earth nitrate hexahydrate), namely, Lanthanum(III) nitrate hexahydrate [La(NO3)3.6H2O] and Samarium(III) nitrate hexahydrate [Sm(NO3)3.6H2O], soluble in low-Z organic solvent (acetone) are evaluated. Six scattering angles are chosen to obtain six (not available from standard radioisotopes) Compton scattered energies to perform narrow-beam transmission experiments. An NaI(Tl) scintillation detector is used to detect the transmitted flux from the different solutions in various proportions. Photon interaction parameters useful in vast basic and applied fields are evaluated. The present measured results, obtained from the Compton scattered technique, are found to be in good agreement with the computed values of radiation interaction parameters obtained from the WinXCom program. The present data on rare-earth solutions have definite scientific importance in nuclear and radiation physics and fill in the gap of nonavailability of such data for radiation workers at these specific energies.