ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Alex Pegarkov, Shawn Somers-Neal, Edgar Matida, Vinh Tang, Tarik Kaya
Nuclear Science and Engineering | Volume 196 | Number 10 | October 2022 | Pages 1161-1171
Technical Paper | doi.org/10.1080/00295639.2022.2067738
Articles are hosted by Taylor and Francis Online.
During a severe power reactor accident, the plant core can melt. The resulting mixture of molten nuclear fuel and other in-core materials is known as corium. For a Canada Deuterium Uranium (CANDU) reactor, the corium is expected to settle at the bottom of the calandria vessel, but there is a potential for some melt to flow through connecting piping and other penetrations. The flow of corium through these structures can be contained if melt solidification and thus plugging occur. A numerical model was created to simulate the flow of molten metal through an empty vertical pipe. This model was benchmarked to a previous analytical model and validated against experimental results with gallium metal (which is a metal with low melting temperature) as an alternative for corium. The numerical model predicted the penetration length of gallium with an average percent error of 10.3% when compared to the experimental penetration length results of gallium. The model was also updated to predict the corium penetration length in cooling pipes of the CANDU reactor during a severe accident.