ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Amod Kishore Mallick, Anurag Gupta, Umasankari Kannan
Nuclear Science and Engineering | Volume 196 | Number 8 | August 2022 | Pages 927-942
Technical Paper | doi.org/10.1080/00295639.2022.2043541
Articles are hosted by Taylor and Francis Online.
Monte Carlo neutron transport codes have traditionally used a fixed-source scheme to simulate a subcritical system with an external source. The efficiency of this scheme is known to depend on the subcriticality level: The lower the subcriticality is, the worse is the efficiency. We have investigated an alternate iterative scheme, namely, the Monte Carlo iterative k-source (IKS) scheme, for the study of neutron subcritical multiplication. Our results show that the iterative scheme not only is as accurate, effective, and computationally efficient as the fixed-source scheme but also has the additional advantage of being weakly dependent on the subcriticality level. Also, the efficiency of this scheme is unaffected by the change in the location of the external source, unlike the fixed-source scheme where the efficiency decreases as the source is moved away from the fissile core center. The algorithm of this scheme is very similar to the algorithm of the eigenmode iterative scheme and hence can be easily implemented in the existing Monte Carlo codes. Our work establishes the validity and accuracy of the Monte Carlo IKS scheme, and with its incorporation in the production-level codes, it can be used for the physics design and analysis of accelerator-driven subcritical systems.