ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kim Wei Chin, Rei Kimura, Hiroshi Sagara, Kosuke Tanabe
Nuclear Science and Engineering | Volume 196 | Number 7 | July 2022 | Pages 852-872
Technical Paper | doi.org/10.1080/00295639.2021.2018927
Articles are hosted by Taylor and Francis Online.
Past studies validated the feasibility of the photofission reaction ratio (PFRR) method using both Gaussian and bremsstrahlung photons to estimate the isotopic composition of nuclear fuel materials without relying on their self-generated neutron information. However, the current PFRR method cannot solve a multinuclide system with more than two nuclides because the instability of the inverse matrix increases with the addition of the number of nuclides. Thus, this research proposes a numerical method for solving the simultaneous equations of a three-nuclide system onto PFRR to estimate the isotopic composition of nuclides. The results show good reproducibility with all cases maintained within a 10% isotopic composition difference except cases 6 and 7 of the first two photon energy combination schemes with maximum composition differences of 15.6% and 13.9% for 10% actual composition, respectively. A 20% actual composition of case 5 for the second photon energy combination scheme has a deviation of 10.6%, which is slightly larger than the 10% composition difference too. Out of three photon energy combination schemes, 6 MeV – 6.5 MeV – 11 MeV has the highest coefficient of determination for all three nuclides and the smallest deviation of below 10% composition difference. Random sampling with normal distribution was performed on the loss to photofission particles from MCNP with 200 sets for each 10 cases on the 6 MeV – 7 MeV – 11 MeV photon energy combination to study the stochastic errors. The isotopic compositions were calculated with the same numerical method, and the difference between the estimated and actual compositions that resulted were fitted with R. The fitting results show good agreement within 91.5% confidence intervals.