ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
My Story: John L. Swanson—ANS member since 1978
. . . and in 2019, on his 90th birthday.
Swanson in 1951, the year of his college graduation . . .
My pre-college years were spent in a rural suburb of Tacoma, Wash. In 1947, I enrolled in Reed College, a small liberal arts school in Portland, Ore.; I majored in chemistry and graduated in 1951. While at Reed, I met and married a young lady with whom I would raise 3 children and spend the next 68 years of my life—almost all of them in Richland, Wash., where I still live.
I was fortunate to have a job each of my “college summers” that provided enough money to cover my college costs for the next year; I don’t think that is possible these days. My job was in the kitchen/dining hall of a salmon cannery in Alaska. Room and board were provided and the cannery was in an isolated location, so I could save almost every dollar of my salary.
Ryoichi Kondo, Tomohiro Endo, Akio Yamamoto, Satoshi Takeda, Hiroki Koike, Kazuya Yamaji, Koji Asano
Nuclear Science and Engineering | Volume 196 | Number 7 | July 2022 | Pages 769-791
Technical Paper | doi.org/10.1080/00295639.2021.2025297
Articles are hosted by Taylor and Francis Online.
Improvements in computational efficiency for the Resonance calculation using energy Spectrum Expansion (RSE) method are proposed in order to increase the applicability of the method for core nuclear analyses. First, efficient treatment of the neutron source for the RSE method has been newly developed. This is a balanced approach from the viewpoints of computation time and memory size, in comparison with the other approaches mentioned in a previous study [R. KONDO et al., “A New Resonance Calculation Method Using Energy Expansion Based on a Reduced Order Model,” Nucl. Sci. Eng., 195, 694 (2021)]. Second, low-rank approximation has been applied to the RSE method considering the deficit ratio of the singular value for the orthogonal basis. Computation time was reduced by ~68% while maintaining sufficient accuracy of effective cross sections. Third, the impacts of the discretization parameters in the method of characteristics on the RSE method have been investigated, and coarser conditions of the parameters were found to be appropriate from the viewpoints of computation time and accuracy of effective cross sections. Finally, RSE calculations with these improvements have been performed for the fuel assembly geometry of a light water reactor. The computation time was reduced by ~70%, and the data size of the scattering cross-section moments was approximately 3900 times smaller in comparison with the RSE calculation without the improvements.