ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Yeni Li, Arvind Sundaram, Hany S. Abdel-Khalik, Paul W. Talbot
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 544-567
Technical Paper | doi.org/10.1080/00295639.2021.1997041
Articles are hosted by Taylor and Francis Online.
As industries take advantage of the widely adopted digitalization of industrial control systems, concerns are heightened about their potential vulnerabilities to adversarial attacks. False data injection attack is one of the most realistic threats because the attack could be as simple as performing a reply attack allowing attackers to circumvent conventional anomaly detection methods. This attack scenario is real for critical systems, e.g., nuclear reactors, chemical plants, etc., because physics-based simulators for a wide range of critical systems can be found in the open market providing the means to generate physics-conforming attack. The state-of-the-art monitoring techniques have proven effective in detecting sudden variations from established recurring patterns, derived by model-based or data-driven techniques, considered to represent normal behavior. This paper further develops a new method designed to detect subtle variations expected with stealthy attacks that rely on intimate knowledge of the system. The method employs physics modeling and feature engineering to design mathematical features that can detect subtle deviations from normal process variation. This work extends the method to real-time analysis and employs a new denoising filter to ensure resiliency to noise, i.e., ability to distinguish subtle variations from normal process noise. The method applicability is exemplified using a hypothesized triangle attack, recently demonstrated to be extremely effective in bypassing detection by conventional monitoring techniques, applied to a representative nuclear reactor system model using the RELAP5 computer code.