ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Dipanjan Ray, Manish Kumar, Om Pal Singh, Prabhat Munshi
Nuclear Science and Engineering | Volume 196 | Number 4 | April 2022 | Pages 478-496
Technical Note | doi.org/10.1080/00295639.2021.1987134
Articles are hosted by Taylor and Francis Online.
Considerable studies have been carried out to evaluate the feasibility of the breed and burn (B&B) concept over the last few decades by applying various simplified or more practical methodologies. In this note, similar studies are performed by improving the simplified methodology used by Kumar and Singh in “A Study of Transverse Buckling Effect on the Characteristics of Nuclides Burnup Wave in a Fast Neutron Multiplying Media,” [Journal of Nuclear Engineering and Radiation Sciience, Vol. 5, p. 4 (2019)] and in other international studies. A consistent parametric approach is adopted for the study on buildup and propagation of a nuclear fuel burnup wave in a fast neutron multiplying medium for two-dimensional cylindrical geometry with azimuthal symmetry. The Multiphysics finite element computational code COMSOL is utilized to solve coupled multigroup neutron diffusion and burnup equations in the U-Pu cycle. The characteristics of the wave are evaluated in terms of transient time (TT) and transient length (TL); TT and TL represent the time and distance covered by the wave in establishing a sustained fuel burnup wave, respectively. The steady-state space is characterized by wave velocity and reaction zone width (full-width at half-maximum and full-width at 10% of maximum).
The results of this study are presented in terms of the characteristics of the transient and steady-state parameters to assess the feasibility of a fuel burnup wave. It is concluded that a sustained fuel burnup wave (about 10 years in a reactor of 5-m length) is attainable in application of the B&B concept in traveling wave technology, although optimization of the transient wave parameters (TT of 1100 days and TL of 2.614 m) is necessary to prolong reactor operating life. The results of the present improved model are compared with the results of Kumar and Singh’s simplified model by performing a sensitivity study of the characterization parameters with radius. Variation of TL with respect to radius (decrement of about 10.6% in the modified model and about 5.4% in the simplified one with the increment in reactor radius from 1.1 to 1.3 m) is relatively less compared to the variation observed for TT (decrement of about 76.5% for the modified approach and about 19.1% for the simplified case). The sensitivity of the wave parameters is studied for different values of neutron source strength used in the analysis.