ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Dipanjan Ray, Manish Kumar, Om Pal Singh, Prabhat Munshi
Nuclear Science and Engineering | Volume 196 | Number 4 | April 2022 | Pages 478-496
Technical Note | doi.org/10.1080/00295639.2021.1987134
Articles are hosted by Taylor and Francis Online.
Considerable studies have been carried out to evaluate the feasibility of the breed and burn (B&B) concept over the last few decades by applying various simplified or more practical methodologies. In this note, similar studies are performed by improving the simplified methodology used by Kumar and Singh in “A Study of Transverse Buckling Effect on the Characteristics of Nuclides Burnup Wave in a Fast Neutron Multiplying Media,” [Journal of Nuclear Engineering and Radiation Sciience, Vol. 5, p. 4 (2019)] and in other international studies. A consistent parametric approach is adopted for the study on buildup and propagation of a nuclear fuel burnup wave in a fast neutron multiplying medium for two-dimensional cylindrical geometry with azimuthal symmetry. The Multiphysics finite element computational code COMSOL is utilized to solve coupled multigroup neutron diffusion and burnup equations in the U-Pu cycle. The characteristics of the wave are evaluated in terms of transient time (TT) and transient length (TL); TT and TL represent the time and distance covered by the wave in establishing a sustained fuel burnup wave, respectively. The steady-state space is characterized by wave velocity and reaction zone width (full-width at half-maximum and full-width at 10% of maximum).
The results of this study are presented in terms of the characteristics of the transient and steady-state parameters to assess the feasibility of a fuel burnup wave. It is concluded that a sustained fuel burnup wave (about 10 years in a reactor of 5-m length) is attainable in application of the B&B concept in traveling wave technology, although optimization of the transient wave parameters (TT of 1100 days and TL of 2.614 m) is necessary to prolong reactor operating life. The results of the present improved model are compared with the results of Kumar and Singh’s simplified model by performing a sensitivity study of the characterization parameters with radius. Variation of TL with respect to radius (decrement of about 10.6% in the modified model and about 5.4% in the simplified one with the increment in reactor radius from 1.1 to 1.3 m) is relatively less compared to the variation observed for TT (decrement of about 76.5% for the modified approach and about 19.1% for the simplified case). The sensitivity of the wave parameters is studied for different values of neutron source strength used in the analysis.