ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Romain Vuiart, Mariya Brovchenko, Julien Taforeau, Vaibhav Jaiswal, Eric Dumonteil
Nuclear Science and Engineering | Volume 196 | Number 4 | April 2022 | Pages 455-477
Technical Paper | doi.org/10.1080/00295639.2021.1991761
Articles are hosted by Taylor and Francis Online.
The operation of many nuclear pressurized water reactors is being extended beyond their design lifetime threshold. From the perspective of possible further lifetime extension, satisfying safety requirements is a priority. Characterization of the structural integrity of the reactor pressure vessel (RPV) is an important issue as it is a guiding parameter that influences the reactor lifetime. Embrittlement of RPV material is primarily induced by the bombardment of fast neutrons (with energies greater than 1 MeV). Consequently, fast neutron fluence is one of the quantities used by safety authorities to characterize the structural integrity of RPV. However, future RPV aging assessments might lean on new variables with respect to current laws, such as neutron fluence considering the whole neutron spectrum or displacements per atom (dpa) since the latter is more representative of overall damage generated in the RPV. In order to meet these challenges, a versatile calculation scheme for RPV aging assessments is proposed in this paper. The developed methodology allows one to compute (fast and non-fast) neutron fluence as well as dpa rate, using the Norgett-Robinson-Torrens dpa model and the Athermal Recombination Corrected dpa model, for a wide azimuthal and axial range on the RPV and in the capsules of the aging monitoring program (which contain dosimeters and vessel material samples). This methodology is based on a coupling between deterministic (CASMO5 and SIMULATE5) and Monte Carlo (MCNP6) numerical approaches. First, the deterministic approach is used to evaluate the full-core fission neutron source term. Second, Monte Carlo modeling is used to perform the neutron attenuation from the core to sites of interest, such as the RPV. The computational efficiency, accuracy, and potential benefits of the methodology are presented. Moreover, the frequency at which neutron transport calculations should be performed in order to obtain sufficiently accurate time-integrated data over a reactor cycle is discussed. Finally, the validity of the fast neutron fluence as an indicator of RPV aging is compared against the use of dpa.