ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Andrew T. Till, Marvin L. Adams, Jim E. Morel
Nuclear Science and Engineering | Volume 196 | Number 1 | January 2022 | Pages 53-74
Technical Paper | doi.org/10.1080/00295639.2021.1932224
Articles are hosted by Taylor and Francis Online.
Energy discretization of the transport equation is difficult due to numerous strong, narrow cross-section (XS) resonances. The standard traditional multigroup (MG) method can be sensitive to approximations in the weighting spectrum chosen for XS averaging, which can lead to inaccurate treatment of important phenomena such as self-shielding. We generalize the concept of a group to a discontiguous range of energies to create the Finite-Element with Discontiguous-Support (FEDS) method. FEDS uses clustering algorithms from machine learning to determine optimal definitions of discontiguous groups. By combining parts of multiple resonances into the same group, FEDS can accurately treat resonance behavior even when the number of groups is orders of magnitude smaller than the number of resonances. In this paper, we introduce the theory of the FEDS method and describe the workflow needed to use FEDS, noting that ordinary MG codes can use FEDS XSs without modification, provided these codes can handle upscattering. This allows existing MG codes to produce FEDS solutions. In the context of light water reactors, we investigate properties of FEDS XSs compared to MG XSs and compare -eigenvalue and reaction rate quantities of interest to continuous-energy Monte Carlo, showing that FEDS provides higher accuracy and less cancellation of error than MG with expert-chosen group structures.