ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
My Story: John L. Swanson—ANS member since 1978
. . . and in 2019, on his 90th birthday.
Swanson in 1951, the year of his college graduation . . .
My pre-college years were spent in a rural suburb of Tacoma, Wash. In 1947, I enrolled in Reed College, a small liberal arts school in Portland, Ore.; I majored in chemistry and graduated in 1951. While at Reed, I met and married a young lady with whom I would raise 3 children and spend the next 68 years of my life—almost all of them in Richland, Wash., where I still live.
I was fortunate to have a job each of my “college summers” that provided enough money to cover my college costs for the next year; I don’t think that is possible these days. My job was in the kitchen/dining hall of a salmon cannery in Alaska. Room and board were provided and the cannery was in an isolated location, so I could save almost every dollar of my salary.
Andrew T. Till, Marvin L. Adams, Jim E. Morel
Nuclear Science and Engineering | Volume 196 | Number 1 | January 2022 | Pages 53-74
Technical Paper | doi.org/10.1080/00295639.2021.1932224
Articles are hosted by Taylor and Francis Online.
Energy discretization of the transport equation is difficult due to numerous strong, narrow cross-section (XS) resonances. The standard traditional multigroup (MG) method can be sensitive to approximations in the weighting spectrum chosen for XS averaging, which can lead to inaccurate treatment of important phenomena such as self-shielding. We generalize the concept of a group to a discontiguous range of energies to create the Finite-Element with Discontiguous-Support (FEDS) method. FEDS uses clustering algorithms from machine learning to determine optimal definitions of discontiguous groups. By combining parts of multiple resonances into the same group, FEDS can accurately treat resonance behavior even when the number of groups is orders of magnitude smaller than the number of resonances. In this paper, we introduce the theory of the FEDS method and describe the workflow needed to use FEDS, noting that ordinary MG codes can use FEDS XSs without modification, provided these codes can handle upscattering. This allows existing MG codes to produce FEDS solutions. In the context of light water reactors, we investigate properties of FEDS XSs compared to MG XSs and compare -eigenvalue and reaction rate quantities of interest to continuous-energy Monte Carlo, showing that FEDS provides higher accuracy and less cancellation of error than MG with expert-chosen group structures.