ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Ezequiel Goldberg, Alejandro Soba
Nuclear Science and Engineering | Volume 195 | Number 12 | December 2021 | Pages 1291-1306
Technical Paper | doi.org/10.1080/00295639.2021.1918939
Articles are hosted by Taylor and Francis Online.
Various numerical models are developed that seek to reproduce, in a simulation instance, the formation and evolution of cracks in the claddings of nuclear fuel elements. The algorithms are based on the cohesive zone method within the finite element framework. When applied to simulations involving fracture mechanics, cohesive elements have various advantages, such as not needing to know the stress state in advance, representing the nucleation of the crack, and being able to reproduce the contact between the crack surfaces after fracture, with numerous application examples for ductile materials, including metals. The models developed were included in the DIONISIO 3.0 nuclear fuel code and compared with analytical test cases, controlled tests of nuclear materials, and a large set of experimental exercises with rods subjected to steep power ramps where breakages are caused due to contact with the pellets. Similarly, these new models were used in controlled experiments where the conditions of an accident type such as a loss-of-coolant accident are reproduced, analyzing the variation of the thermohydraulic, thermomechanical, and structural parameters of a rod.