ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Ezequiel Goldberg, Alejandro Soba
Nuclear Science and Engineering | Volume 195 | Number 12 | December 2021 | Pages 1291-1306
Technical Paper | doi.org/10.1080/00295639.2021.1918939
Articles are hosted by Taylor and Francis Online.
Various numerical models are developed that seek to reproduce, in a simulation instance, the formation and evolution of cracks in the claddings of nuclear fuel elements. The algorithms are based on the cohesive zone method within the finite element framework. When applied to simulations involving fracture mechanics, cohesive elements have various advantages, such as not needing to know the stress state in advance, representing the nucleation of the crack, and being able to reproduce the contact between the crack surfaces after fracture, with numerous application examples for ductile materials, including metals. The models developed were included in the DIONISIO 3.0 nuclear fuel code and compared with analytical test cases, controlled tests of nuclear materials, and a large set of experimental exercises with rods subjected to steep power ramps where breakages are caused due to contact with the pellets. Similarly, these new models were used in controlled experiments where the conditions of an accident type such as a loss-of-coolant accident are reproduced, analyzing the variation of the thermohydraulic, thermomechanical, and structural parameters of a rod.