ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Mohamed Elsafi, Jamila S. Alzahrani, Mahmoud I. Abbas, Mona M. Gouda, Abouzeid A. Thabet, Mohamed S. Badawi, Ahmed M. El-Khatib
Nuclear Science and Engineering | Volume 195 | Number 9 | September 2021 | Pages 1008-1016
Technical Note | doi.org/10.1080/00295639.2021.1895406
Articles are hosted by Taylor and Francis Online.
The optimization of measurement of environmental samples is achieved by putting the sample closer to the detector to increase the full-energy peak efficiency, which leads to decrease of the detection limit. The present work inspects the utilization of Geant4 simulation for a NaI cubic scintillation detector with a cavity using two tracks. The radionuclide option includes coincidence summing, and the monoenergetic option is summing free coincidence. The ratio between the monoenergetic to redionuclide options gives the coincidence summing correction factors. In the experiments a gamma-ray aqueous source containing the radionuclide 152Eu covering the range from 121 to 1408 keV was used. Comparing the monoenergetic option for calculating the full-energy peak efficiency and the corrected experimental efficiency, the values are in agreement.