ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Denver Airport may go nuclear
Colorado’s first nuclear power plant of the 21st century could be built at an unconventional site: the Denver International Airport (DEN).
In its mission to gain energy independence and become the greenest airport in the world, DEN has announced that it will conduct a feasibility study to determine the viability of building a small modular reactor on its 33,500-acre campus.
Michaël Petit
Nuclear Science and Engineering | Volume 195 | Number 8 | August 2021 | Pages 864-876
Technical Paper | doi.org/10.1080/00295639.2020.1867436
Articles are hosted by Taylor and Francis Online.
Concrete plays a major role in nuclear facilities as protection against radiation. However, its chemical composition, which is fundamental, is often unknown. Several concrete samples, extracted from the AMANDE-MIRCOM Institute for Radiological Protection and Nuclear Safety (IRSN) facility, were analyzed. Various simulations were performed in order to evaluate the neutron fluence behind a 40-cm-thick concrete wall. These simulations were compared to experimental measurements performed with a Bonner sphere spectrometer and a neutron survey meter. No set of parameters tested was able to produce a simulation accurately matching all the experimental results, but sensitivity studies on several parameters highlight that the three most sensitive parameters are the hydrogen content, the density, and the concrete inhomogeneity. To improve the agreement between the simulations and the measurements, the concrete inhomogeneity modeling should be studied further. Nevertheless, using concrete compositions that are close to reality, especially for hydrogen content, is crucial to correctly simulate neutron transport.