ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
A. Alhajri, V. Sobes, P. Ducru, B. Ganapol, B. Forget
Nuclear Science and Engineering | Volume 195 | Number 8 | August 2021 | Pages 813-824
Technical Paper | doi.org/10.1080/00295639.2021.1898923
Articles are hosted by Taylor and Francis Online.
A benchmark to verify the accuracy of neutron transport criticality solvers along the energy dimension was established. For the first time, the analytic solution of the flux amplitude was derived in the particular case of an infinite-homogeneous medium with isotropic scattering in the center of mass and an arbitrary number of no-threshold, neutral particle reaction resonances (e.g., radiative capture, fission, and resonance scattering). In this paper, the benchmark is extended to the adjoint transport problem, and a solution to the adjoint flux is derived. The adjoint flux solution is then combined with the forward flux to obtain expressions for an arbitrary-order cross section and resonance parameter sensitivity coefficients. Finally, numerical solutions are provided for a benchmark problem constituted of the first resonance of 239Pu, the 6.67-eV resonance of 238U, and a scattering isotope with a flat cross section, allowing for computational verification of the sensitivity coefficients and nuclear data uncertainty of current neutron transport criticality codes. Through these novel results, this analytic benchmark can serve as a reference to verify the sensitivity analysis of neutron transport criticality calculations.