ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Forrest Shriver, Cole Gentry, Justin Watson
Nuclear Science and Engineering | Volume 195 | Number 6 | June 2021 | Pages 626-647
Technical Paper | doi.org/10.1080/00295639.2020.1852021
Articles are hosted by Taylor and Francis Online.
Traditional light water reactor simulations are usually either high fidelity, requiring hundreds of node-hours, or low fidelity, requiring only seconds to run on a common workstation. In current research, it is desirable to combine the positive aspects of both of these simulation types while minimizing their associated negative costs. Because neural networks have shown significant success when applied to other fields, they could provide a means for combining these two classes of simulation. This paper describes a methodology for designing and training neural networks to predict normalized pin powers and within a reflective two-dimensional pressurized water reactor assembly model. The developed methodology combines computer vision approaches, modular neural network approaches, and hyperparameter optimization methods to intelligently design novel network architectures. This methodology has been used to develop a novel new architecture, LatticeNet, which is capable of predicting pin-resolved powers and at a high level of detail. The results produced by this novel architecture show the successful prediction of the target neutronics parameters under a variety of typical neutronics conditions, and they indicate a potential path forward for neural network–based model development.