ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Mike Kramer: Navigating power deals in the new data economy
Mike Kramer has a background in finance, not engineering, but a combined 20 years at Exelon and Constellation and a key role in the deals that have Meta and Microsoft buying power from Constellation’s Clinton and Crane sites have made him something of a nuclear expert.
Kramer spoke with Nuclear News staff writer Susan Gallier in late August, just after a visit to Clinton in central Illinois to celebrate a power purchase agreement (PPA) with Meta that closed in June. As Constellation’s vice president for data economy strategy, Kramer was part of the deal-making—not just the celebration.
Forrest Shriver, Cole Gentry, Justin Watson
Nuclear Science and Engineering | Volume 195 | Number 6 | June 2021 | Pages 626-647
Technical Paper | doi.org/10.1080/00295639.2020.1852021
Articles are hosted by Taylor and Francis Online.
Traditional light water reactor simulations are usually either high fidelity, requiring hundreds of node-hours, or low fidelity, requiring only seconds to run on a common workstation. In current research, it is desirable to combine the positive aspects of both of these simulation types while minimizing their associated negative costs. Because neural networks have shown significant success when applied to other fields, they could provide a means for combining these two classes of simulation. This paper describes a methodology for designing and training neural networks to predict normalized pin powers and within a reflective two-dimensional pressurized water reactor assembly model. The developed methodology combines computer vision approaches, modular neural network approaches, and hyperparameter optimization methods to intelligently design novel network architectures. This methodology has been used to develop a novel new architecture, LatticeNet, which is capable of predicting pin-resolved powers and at a high level of detail. The results produced by this novel architecture show the successful prediction of the target neutronics parameters under a variety of typical neutronics conditions, and they indicate a potential path forward for neural network–based model development.