ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
N. L. Scuro, G. Angelo, E. Angelo, P. E. Umbehaun, W. M. Torres, P. H. G. Santos, L. O. Freire, D. A. Andrade
Nuclear Science and Engineering | Volume 195 | Number 4 | April 2021 | Pages 349-366
Technical Paper | doi.org/10.1080/00295639.2020.1825306
Articles are hosted by Taylor and Francis Online.
This work presents a Reynolds-averaged Navier Stokes–based computational fluid dynamics methodology for the calculation of pressure drop and mass flow rate distribution in a material test reactor flat-plate-type standard fuel assembly (SFA) of the IEA-R1 Brazilian research reactor to predict future improvements in newer SFA designs. The results improve the understanding of the origin of fuel plate oxidation due to high temperatures, and consequently, due to the internal flow dynamics. All numerical analyses were performed with the ANSYS-CFX® commercial code. The observed results show that the movement pin decreases the central channel mass flow due to the length of the vortex at the inlet region. However, the outlet nozzle showed greater general influence in the flow dynamics. It should have a more gradual cross-section transition being away from the fuel plates or a squarer-shaped design to get a more homogeneous mass flow distribution. Optimizing both regions could lead to a better cooling condition. The validation of the IEA-R1 numerical methodology was made by comparing the McMaster University’s dummy model experiment with a numerical model that uses the same numerical methodology. The experimental data were obtained with laser Doppler velocimetry, and the comparison showed good agreement for both pressure drop and mass flow rate distribution using the Standard k-ω turbulence model.