ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Chen Dubi, Rami Atar
Nuclear Science and Engineering | Volume 195 | Number 3 | March 2021 | Pages 256-270
Technical Paper | doi.org/10.1080/00295639.2020.1819136
Articles are hosted by Taylor and Francis Online.
Fluctuations associated with power and detector readings in a nuclear reactor, commonly known as reactor noise, are of great importance in nuclear science and engineering. Two different types of noise are described in the literature: internal noise, which is associated with the inherent stochasticity of fission chains, and external noise, which is governed by physical fluctuations of the macroscopic system. The latter may include temperature fluctuations, vibration of regulation rods, fluent turbulence, bubble formation, and more. It is generally true that in power reactors, where high temperatures and strong hydrodynamic flows are characteristic, the external noise is dominant. The goal of this paper is to propose a stochastic differential equation (SDE) that models the effect of two types of external noise terms: the inlet temperature variations, which affect the power through reactivity feedback, and rod vibrations, which affect the reactivity directly. Although these aspects were studied in the past, they were only treated via nonstochastic equations. It is argued that the SDE approach, previously used only for modeling the effect of internal noise on nuclear reactor dynamics, is also highly suitable for modeling external noise. The main advantage of our approach is the ability to arrive at analytic formulas.
The contributions presented in this paper based on the SDE approach are as follows. Under a linear approximation of thermal feedback, the stabilizing effect of thermal feedback is explained and quantified, and a limiting distribution is analyzed in full. An analysis of the detector response on a finite time interval is carried out, leading to a version of the Feynman variance-to-mean-ratio formula in the presence of external noise. Finally, a calculation of the eigenvalues associated with the linearized system alluded to above is performed, showing that in practical cases the rod vibrations and inlet temperature fluctuations correspond to eigenvalues in distinct timescales. The significance of these finding is discussed.