ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Songtao Yin, Hongdong Zhen, Lei Zhang, Bo Cheng, Ningning Wang, Haijun Wang
Nuclear Science and Engineering | Volume 193 | Number 12 | December 2019 | Pages 1403-1410
Technical Paper | doi.org/10.1080/00295639.2019.1642675
Articles are hosted by Taylor and Francis Online.
Safety analyses of pressurized water reactors and boiling water reactors in the event of small-break loss-of-coolant accidents strongly depend on leakage rate predictions using two-phase critical flow models. The paper aims to revise the critical flow criterion and consider the nonequilibrium phenomena of critical flows in constructing a modified two-phase critical flow model. The model predictions exhibit strong similarities with the experimental values, with prediction deviations of 14.4% for mass fluxes and 19.3% for outlet pressure. The compiled code, according to the proposed model, can be exploited in pressure pipeline designs, providing the theoretical basis for leak-before-break analyses.