ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Ryota Katano, Masao Yamanaka, Cheol Ho Pyeon
Nuclear Science and Engineering | Volume 193 | Number 12 | December 2019 | Pages 1394-1402
Technical Paper | doi.org/10.1080/00295639.2019.1624084
Articles are hosted by Taylor and Francis Online.
The applicability of the linear combination method is experimentally confirmed through the pulsed neutron source (PNS) experiment. The linear combination method reduces the spatial higher-mode (HM) components in neutron flux distribution and provides one representative value of the measurement of the prompt neutron decay constant by the linear combination of the neutron counts obtained in the PNS experiment. The PNS experiment is conducted at Kyoto University Critical Assembly with deuteron-tritium source, and the neutron counts are measured at multiple detector positions. The experiment results show that the dependency of the prompt neutron decay constant on the masking time is dramatically reduced by the linear combination method compared to the conventional method: The HM components are eliminated not only by temporal decay but also by the linear combination. Through the experiment, the linear combination method can be a candidate for a practical measurement method of the prompt neutron decay constant reducing the spatial HM effects.