ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Cihangir Celik, Douglas E. Peplow, Gregory G. Davidson, Mathew W. Swinney
Nuclear Science and Engineering | Volume 193 | Number 12 | December 2019 | Pages 1355-1370
Technical Paper | doi.org/10.1080/00295639.2019.1631028
Articles are hosted by Taylor and Francis Online.
For a radiation detector that is not isotropic, a directional detector response is needed to accurately account for the variation in a detector’s behavior depending on the incoming particle direction. The concept of the detector response function has been extended to include particle direction using a set of pregenerated detector responses based on the orientation of the incoming radiation and the detector. This directional detector response function (DDRF) then can be applied to the flux and current tallies computed by a Monte Carlo simulation. Validation of the new approach has been done by comparing simulated count rates processed with the DDRF to measured count rates taken with a 5.08 × 10.16 × 40.64-cm NaI(Tl) detector. The comparisons show that the applied method produces good agreement with both background and source measurements with a 137Cs source. Furthermore, separation of the detector response generation from Monte Carlo particle transport calculations provides greater flexibility in locating single or multiple detectors without any interference in the model and also enables simulation of various models using the same detector response without the need for generating additional detector responses if the same detector is being used.