ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
P. Deng, B. K. Jeon, H. Park, W. S. Yang
Nuclear Science and Engineering | Volume 193 | Number 12 | December 2019 | Pages 1310-1338
Technical Paper | doi.org/10.1080/00295639.2019.1621617
Articles are hosted by Taylor and Francis Online.
For accurate assessment of nuclear heating in fast reactors, a new coupled neutron and gamma heating calculation scheme has been developed based on VARIANT nodal transport solutions of neutron and gamma flux distributions. The MC2-3 code was extended to generate multigroup neutron and gamma cross sections and kinetic energy release in materials (KERMA) factors, and a utility program CURVE was developed to reconstruct detailed pin and duct wall powers from VARIANT output files. The improved heating calculation scheme has been verified against MCNP6 Monte Carlo reference solutions for the Advanced Burner Test Reactor (ABTR) and Experimental Breeder Reactor II (EBR-II) benchmark problems. Compared to the existing coupled heating calculation method based on DIF3D diffusion theory solutions, the new heating calculation scheme utilizes more accurate gamma cross sections and KERMA factors, accounts for the transport effects, and eliminates the approximations in the existing pin power reconstruction scheme. As a result, it produces more accurate assembly and pin power distributions. For both the ABTR and EBR-II problems, the maximum assembly power error was ~1% in fuel assemblies and ~2% in instrumented structure assemblies, and the maximum error in pin segment powers in an axial node of fuel assembly was ~4%. In the blankets of the EBR-II problem, the maximum error in pin segment powers was increased to ~8%, mainly due to the lower power level and the relatively large error in the nodal power of the VARIANT solution.