ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Klara Insulander Björk, Aneta Herman, Marcus Hedberg, Christian Ekberg
Nuclear Science and Engineering | Volume 193 | Number 11 | November 2019 | Pages 1255-1264
Technical Paper | doi.org/10.1080/00295639.2019.1614368
Articles are hosted by Taylor and Francis Online.
Uranium nitride (UN) is considered as nuclear reactor fuel because of, among other reasons, its high uranium density and its high thermal conductivity. Its main drawback is that it relatively easily dissolves in hot water, which is particularly problematic when it is used in water-cooled reactors. One possible remedy to this is to add some corrosion inhibitor as dopant to the UN matrix. A number of dopants have been identified that have the potential to inhibit the dissolution process, and their respective merits have been investigated both by neutronic simulations and dissolution experiments. It is concluded that chromium is the most promising candidate.