ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC could improve decommissioning trust fund oversight, OIG reports
The Nuclear Regulatory Commission could do more to improve its oversight of decommissioning trust funds, according to an assessment by the NRC’s Office of Inspector General. In particular, the assessment, which was conducted by Crowe LLP on behalf of the OIG, identified four areas related to developing policies and procedures, workflows, and other support that would enhance NRC oversight of the trust funds.
Amit Thakur, Umasankari Kannan
Nuclear Science and Engineering | Volume 193 | Number 10 | October 2019 | Pages 1160-1171
Technical Paper | doi.org/10.1080/00295639.2019.1599607
Articles are hosted by Taylor and Francis Online.
Evolutionary algorithms play an important role for solving various optimization problems related to fuel management in reactor physics like core loading pattern optimization (LPO) or refueling. In general, all algorithms make a sample of solution candidates and evaluate the fitness of all candidates, and then the candidates with better fitness value are used to generate the next sample of solution candidates. In optimization algorithms, internal parameters [like population size, weighting factor in estimation of distribution algorithm (EDA) and population size, cross-over rate, etc., in Genetic Algorithm (GA)] have a stiffness problem as the value of these parameters is fixed at the first generation and is not being changed subsequently. However, the flexibility of changing the value of even one internal parameter during the generations will make the algorithm more efficient. In this paper we propose that fuzzy logics can be used in an innovative way to eliminate the stiffness problem related to internal parameters in evolutionary algorithms. As a test case, EDA for initial core LPO of the advanced heavy water reactor is chosen, and the use of fuzzy logics has shown a significant improvement in the algorithm’s performance. The appropriate value of weighting factor α in EDA has been predicted using fuzzy logics in each generation, and this has resulted in efficiency improvement of the algorithm. The improved methodology is expected to give better performance with other optimization algorithms, such as the GA or Ant Colony Optimization Algorithm, etc.