ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Amit Thakur, Umasankari Kannan
Nuclear Science and Engineering | Volume 193 | Number 10 | October 2019 | Pages 1160-1171
Technical Paper | doi.org/10.1080/00295639.2019.1599607
Articles are hosted by Taylor and Francis Online.
Evolutionary algorithms play an important role for solving various optimization problems related to fuel management in reactor physics like core loading pattern optimization (LPO) or refueling. In general, all algorithms make a sample of solution candidates and evaluate the fitness of all candidates, and then the candidates with better fitness value are used to generate the next sample of solution candidates. In optimization algorithms, internal parameters [like population size, weighting factor in estimation of distribution algorithm (EDA) and population size, cross-over rate, etc., in Genetic Algorithm (GA)] have a stiffness problem as the value of these parameters is fixed at the first generation and is not being changed subsequently. However, the flexibility of changing the value of even one internal parameter during the generations will make the algorithm more efficient. In this paper we propose that fuzzy logics can be used in an innovative way to eliminate the stiffness problem related to internal parameters in evolutionary algorithms. As a test case, EDA for initial core LPO of the advanced heavy water reactor is chosen, and the use of fuzzy logics has shown a significant improvement in the algorithm’s performance. The appropriate value of weighting factor α in EDA has been predicted using fuzzy logics in each generation, and this has resulted in efficiency improvement of the algorithm. The improved methodology is expected to give better performance with other optimization algorithms, such as the GA or Ant Colony Optimization Algorithm, etc.