ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Apoorva V. Rudra, Dinesh V. Kalaga, Masahiro Kawaji
Nuclear Science and Engineering | Volume 193 | Number 10 | October 2019 | Pages 1147-1159
Technical Paper | doi.org/10.1080/00295639.2019.1595311
Articles are hosted by Taylor and Francis Online.
In order to investigate air-ingress phenomena in a gas-cooled very high temperature reactor (VHTR), natural circulation experiments have been conducted in a helium flow loop after the injection of nitrogen into the lower plenum. A pair of helium analyzers were used to measure the nitrogen and helium concentrations in the lower plenum and upper plenum. The changes in the nitrogen concentration in the upper plenum were used to calculate the time required for the transport of nitrogen from the lower plenum to upper plenum through a riser flow channel made of graphite. The effect of system temperature and pressure on the rate of nitrogen transport has been studied extensively. Furthermore, a close examination of the graphite flow channel wall temperatures at different elevations showed small but sudden drops indicating the arrival of nitrogen at each elevation. From these data, the upward transport of nitrogen injected into the lower plenum under natural circulation conditions could be quantitatively investigated. The experimental findings indicate that the driving mechanisms for air transport through the reactor core of VHTR would result from both molecular diffusion and natural circulation. At low graphite temperatures in the riser, molecular diffusion is the dominating mechanism; however, as the riser temperature increases, natural circulation becomes dominant and the rate of nitrogen transport increases. Further, the time constants for these mechanisms have been calculated using a simplified species transport equation.