ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Apoorva V. Rudra, Dinesh V. Kalaga, Masahiro Kawaji
Nuclear Science and Engineering | Volume 193 | Number 10 | October 2019 | Pages 1147-1159
Technical Paper | doi.org/10.1080/00295639.2019.1595311
Articles are hosted by Taylor and Francis Online.
In order to investigate air-ingress phenomena in a gas-cooled very high temperature reactor (VHTR), natural circulation experiments have been conducted in a helium flow loop after the injection of nitrogen into the lower plenum. A pair of helium analyzers were used to measure the nitrogen and helium concentrations in the lower plenum and upper plenum. The changes in the nitrogen concentration in the upper plenum were used to calculate the time required for the transport of nitrogen from the lower plenum to upper plenum through a riser flow channel made of graphite. The effect of system temperature and pressure on the rate of nitrogen transport has been studied extensively. Furthermore, a close examination of the graphite flow channel wall temperatures at different elevations showed small but sudden drops indicating the arrival of nitrogen at each elevation. From these data, the upward transport of nitrogen injected into the lower plenum under natural circulation conditions could be quantitatively investigated. The experimental findings indicate that the driving mechanisms for air transport through the reactor core of VHTR would result from both molecular diffusion and natural circulation. At low graphite temperatures in the riser, molecular diffusion is the dominating mechanism; however, as the riser temperature increases, natural circulation becomes dominant and the rate of nitrogen transport increases. Further, the time constants for these mechanisms have been calculated using a simplified species transport equation.