ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Md Saifur Rahman, Jie Ding, Ali Beheshti, Xinghang Zhang, Andreas A. Polycarpou
Nuclear Science and Engineering | Volume 193 | Number 9 | September 2019 | Pages 998-1012
Technical Paper | doi.org/10.1080/00295639.2019.1582315
Articles are hosted by Taylor and Francis Online.
This study investigates the friction and wear behavior of Inconel 617, one of the primary candidate materials for high-temperature gas-cooled nuclear reactors. Using a custom-built, high-temperature tribometer, a helium (He)-cooled reactor environment was simulated up to 950°C. To obtain a comprehensive understanding of the Inconel 617 tribological response, the effects of contact load, temperature, air and He environments, sliding speed, and sliding distance were studied. From the conditions investigated, the coefficient of friction and wear values are the highest in a high-temperature He atmosphere. Scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction techniques were used to analyze the Inconel 617 oxide layer. Analysis of the samples tested in the He atmosphere showed the presence of Cr-rich oxide with a lower presence of Co-Ni-Mo compared to the samples tested in air. Characterization also revealed the existence of a very hard protective glaze layer in air while such layer was not observed in the He environment, which was associated with higher wear/friction values.