ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC could improve decommissioning trust fund oversight, OIG reports
The Nuclear Regulatory Commission could do more to improve its oversight of decommissioning trust funds, according to an assessment by the NRC’s Office of Inspector General. In particular, the assessment, which was conducted by Crowe LLP on behalf of the OIG, identified four areas related to developing policies and procedures, workflows, and other support that would enhance NRC oversight of the trust funds.
Stefano Terlizzi, Dan Kotlyar
Nuclear Science and Engineering | Volume 193 | Number 9 | September 2019 | Pages 948-965
Technical Paper | doi.org/10.1080/00295639.2019.1583948
Articles are hosted by Taylor and Francis Online.
This paper presents the theoretical foundations and the practical implementation of the Fission Matrix Decomposition (FMD) method. The FMD method is a hybrid technique for the rapid and accurate solution of the criticality transport problem in highly heterogeneous media. The method relies on a two-stage sequence, conceptually similar to the approach adopted by production codes, such as CASMO/SIMULATE. First, a database of local fission matrices and coupling coefficients is generated through Monte Carlo calculations. The database is then used to reconstruct the full fission matrix, from which multiplication factor and fission source distribution are computed with a deterministic eigensolver. The FMD method is here tested against two stylized problems: (1) the pressurized water reactor unit-cell problem and (2) the resource-renewable boiling water assembly problem. The accuracy and computational efficiency of the FMD method are compared against the continuous-energy Monte Carlo Fission Source Iteration method, the Fission Matrix-Based Monte Carlo approach, and the lattice-diffusion approximation. For the analyzed cases, the FMD was 100 times faster than diffusion, while maintaining transport accuracy with a mean absolute percent error lower than 1% on the fission source distribution and difference in multiplication factor below 7 pcm.