ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Ben C. Yee, Brendan Kochunas, Edward W. Larsen
Nuclear Science and Engineering | Volume 193 | Number 7 | July 2019 | Pages 722-745
Technical Paper | doi.org/10.1080/00295639.2018.1562777
Articles are hosted by Taylor and Francis Online.
The Multilevel in Space and Energy Diffusion (MSED) method accelerates the iterative convergence of multigroup diffusion eigenvalue problems by performing work on lower-order equations with only one group and/or coarser spatial grids. It consists of two primary components: (1) a grey (one-group) diffusion eigenvalue problem that is solved via Wielandt-shifted power iteration (PI) and (2) a multigrid-in-space linear solver. In previous work, the efficiency of MSED was verified using Fourier analysis and numerical results from a one-dimensional multigroup diffusion code. Since that work, MSED has been implemented as a solver for the coarse-mesh finite difference (CMFD) system in the three-dimensional Michigan Parallel Characteristics Transport (MPACT) code. In this paper, the results from the implementation of MSED in MPACT are presented, and the changes needed to make MSED more suitable for MPACT are described. For problems without feedback, the results in this paper show that MSED can reduce the CMFD run time by an order of magnitude and the overall run time by a factor of 2 to 3 compared to the default CMFD solver in MPACT [PI with the generalized minimal residual (GMRES) method]. For problems with feedback, the convergence of the outer Picard iteration scheme is worsened by the well-converged CMFD solutions produced by the standard MSED method. To overcome this unintuitive deficiency, MSED may be run with looser convergence criteria (a modified version of the MSED method called MSED-L) to circumvent the issue until the multiphysics iteration in MPACT is improved. Results show that MSED-L can reduce the CMFD run time in MPACT by an order of magnitude, without negatively impacting the outer Picard iteration scheme.