ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Ben C. Yee, Brendan Kochunas, Edward W. Larsen
Nuclear Science and Engineering | Volume 193 | Number 7 | July 2019 | Pages 722-745
Technical Paper | doi.org/10.1080/00295639.2018.1562777
Articles are hosted by Taylor and Francis Online.
The Multilevel in Space and Energy Diffusion (MSED) method accelerates the iterative convergence of multigroup diffusion eigenvalue problems by performing work on lower-order equations with only one group and/or coarser spatial grids. It consists of two primary components: (1) a grey (one-group) diffusion eigenvalue problem that is solved via Wielandt-shifted power iteration (PI) and (2) a multigrid-in-space linear solver. In previous work, the efficiency of MSED was verified using Fourier analysis and numerical results from a one-dimensional multigroup diffusion code. Since that work, MSED has been implemented as a solver for the coarse-mesh finite difference (CMFD) system in the three-dimensional Michigan Parallel Characteristics Transport (MPACT) code. In this paper, the results from the implementation of MSED in MPACT are presented, and the changes needed to make MSED more suitable for MPACT are described. For problems without feedback, the results in this paper show that MSED can reduce the CMFD run time by an order of magnitude and the overall run time by a factor of 2 to 3 compared to the default CMFD solver in MPACT [PI with the generalized minimal residual (GMRES) method]. For problems with feedback, the convergence of the outer Picard iteration scheme is worsened by the well-converged CMFD solutions produced by the standard MSED method. To overcome this unintuitive deficiency, MSED may be run with looser convergence criteria (a modified version of the MSED method called MSED-L) to circumvent the issue until the multiphysics iteration in MPACT is improved. Results show that MSED-L can reduce the CMFD run time in MPACT by an order of magnitude, without negatively impacting the outer Picard iteration scheme.