ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Nuclear Dirigo
On April 22, 1959, Rear Admiral George J. King, superintendent of the Maine Maritime Academy, announced that following the completion of the 1960 training cruise, cadets would begin the study of nuclear engineering. Courses at that time included radiation physics, reactor control and instrumentation, reactor theory and engineering, thermodynamics, shielding, core design, reactor maintenance, and nuclear aspects.
Daniele Tomatis
Nuclear Science and Engineering | Volume 193 | Number 6 | June 2019 | Pages 622-637
Technical Paper | doi.org/10.1080/00295639.2018.1553428
Articles are hosted by Taylor and Francis Online.
The cross section preparation for reactor calculations produces few-group data libraries whose storage needs in memory increase severely when more physical output is requested. As a matter of fact, depletion chains with many isotopes are suggested for a more accurate isotopic inventory all along the fuel cycle, and coarse meshes are not suitable to compute finer distributions of reaction rates in highly heterogeneous systems. This work investigates the use of compression techniques on the power form factors to evaluate potential storage reduction for homogenized pin-by-pin data. The form factors are analyzed in several physical conditions of normal operation for Gd-poisoned UO2 and mixed-oxide fuel assemblies whose specifications come from a benchmark problem. Two numerical transforms are studied on two different applications, providing recommendations for general use in core calculations.