ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Delgersaikhan Tuya, Toru Obara
Nuclear Science and Engineering | Volume 193 | Number 5 | May 2019 | Pages 481-494
Technical Paper | doi.org/10.1080/00295639.2018.1540209
Articles are hosted by Taylor and Francis Online.
A multiregion integral kinetic (MIK) code based on the integral kinetic model and a Monte Carlo neutron transport method has been developed with a new time-dependent feedback modeling capability. The current MIK code is applicable to the supercritical power transient following reactivity insertion in a fissile system of arbitrary geometry and composition, taking its feedback mechanisms into account. The new time-dependent feedback modeling capability allows a more direct and accurate treatment of complicated and nonlinear feedback mechanisms in a given system. The purpose of this study is to verify the MIK code and its time-dependent feedback modeling capability through various supercritical transient experiments conducted at the Godiva, TRACY, and SILENE facilities. Specifically, four supercritical experiments were selected and simulated using the MIK code. The various complicated feedback mechanisms—thermal expansion in Godiva, and Doppler broadening, thermal expansion, and radiolytic gas creation in TRACY and SILENE—provide a good benchmark for verifying the MIK code and its time-dependent feedback model. The obtained results show generally good, albeit occasionally poor, agreement with experimental results depending on the specific experiment. When the reasons for the poor agreement are considered, however, it may be concluded that the simulated results show promising agreement with the experiments, verifying the MIK code and its time-dependent feedback modeling capability.