ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
My Story: John L. Swanson—ANS member since 1978
. . . and in 2019, on his 90th birthday.
Swanson in 1951, the year of his college graduation . . .
My pre-college years were spent in a rural suburb of Tacoma, Wash. In 1947, I enrolled in Reed College, a small liberal arts school in Portland, Ore.; I majored in chemistry and graduated in 1951. While at Reed, I met and married a young lady with whom I would raise 3 children and spend the next 68 years of my life—almost all of them in Richland, Wash., where I still live.
I was fortunate to have a job each of my “college summers” that provided enough money to cover my college costs for the next year; I don’t think that is possible these days. My job was in the kitchen/dining hall of a salmon cannery in Alaska. Room and board were provided and the cannery was in an isolated location, so I could save almost every dollar of my salary.
M. M. R. Williams
Nuclear Science and Engineering | Volume 193 | Number 4 | April 2019 | Pages 327-345
Technical Paper | doi.org/10.1080/00295639.2018.1531620
Articles are hosted by Taylor and Francis Online.
A number of approximate probability distribution functions (pdf’s) for the neutron density are examined with reference to low source startup. The most accurate method for determining the safe source strength, to reduce the likelihood of a rogue transient during startup, is that arising from the Pál-Bell equations. When these equations are extended to include space and energy dependence the numerical work becomes extensive. A pdf is developed which gives results that compare favorably with those from the exact solution but requires very much less numerical work. The method is applicable to space- and energy-dependent problems. Extensive numerical examples are given of the new method and of others which have been proposed over the years. In addition, we explore other approximations, unrelated to the generating function, that can lead to substantial computational savings. We have additionally described the principles behind, and provided a simple review of, the low source algorithm from which anyone unfamiliar with low source concepts can benefit.