ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
M. M. R. Williams
Nuclear Science and Engineering | Volume 193 | Number 4 | April 2019 | Pages 327-345
Technical Paper | doi.org/10.1080/00295639.2018.1531620
Articles are hosted by Taylor and Francis Online.
A number of approximate probability distribution functions (pdf’s) for the neutron density are examined with reference to low source startup. The most accurate method for determining the safe source strength, to reduce the likelihood of a rogue transient during startup, is that arising from the Pál-Bell equations. When these equations are extended to include space and energy dependence the numerical work becomes extensive. A pdf is developed which gives results that compare favorably with those from the exact solution but requires very much less numerical work. The method is applicable to space- and energy-dependent problems. Extensive numerical examples are given of the new method and of others which have been proposed over the years. In addition, we explore other approximations, unrelated to the generating function, that can lead to substantial computational savings. We have additionally described the principles behind, and provided a simple review of, the low source algorithm from which anyone unfamiliar with low source concepts can benefit.