ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leak-tightness test on deck for SRS mega unit
The Savannah River Site in South Carolina will begin a leak-tightness test to qualify the megavolume Saltstone Disposal Unit (SDU) 10 to store up to 33 million gallons of solidified, decontaminated salt solution produced at the site.
Jagjit Singh Matharu, Vidya Devi
Nuclear Science and Engineering | Volume 193 | Number 3 | March 2019 | Pages 314-324
Technical Paper | doi.org/10.1080/00295639.2018.1538280
Articles are hosted by Taylor and Francis Online.
This paper presents a novel approach for uncertainty propagation of neutron-induced activation cross-section measurement using unscented transformation (UT). Generally, the first-order sensitivity analysis (sandwich formula) method is used for uncertainty propagation in cross-section measurement. It is based on a linear approximation of Taylor series expansion of the function of input parameters and gives satisfactory results for smooth nonlinear functions having relatively small uncertainties. On the contrary, the UT technique is completely defined by the moments of random process and hence produces better results for error propagation in the nonlinear case with large uncertainties. The UT method is easier to implement and gives results as accurate as the sandwich formula and Monte Carlo techniques. This work examines the application of the UT method in nuclear science as an alternate to the sandwich formula and Monte Carlo methods.