ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Wasim Raza, Kwang-Yong Kim
Nuclear Science and Engineering | Volume 161 | Number 2 | February 2009 | Pages 245-254
Technical Note | doi.org/10.13182/NSE161-245
Articles are hosted by Taylor and Francis Online.
In this work multiobjective shape optimization of a 19-pin wire-wrapped fuel assembly is carried out using a hybrid multiobjective evolutionary approach in order to achieve an acceptable compromise between two competing objectives, i.e., enhancement of heat transfer and reduction of friction loss. Two nondimensional variables, wire-spacer diameter to fuel rod diameter ratio and wire-wrap pitch to fuel rod diameter ratio, are chosen as design variables. The response surface approximation method is used to construct the surrogate with objective function values calculated by means of Reynolds-averaged Navier-Stokes analysis of the flow and heat transfer. The shear stress transport turbulence model is used as a turbulence closure. The optimization results are processed by the Pareto-optimal method. The Pareto-optimal solutions are obtained using a combination of the evolutionary algorithm NSGA-II and a local search method. The Pareto-optimal front for the wire-wrapped fuel assembly has been obtained. With an increase in the wire-spacer diameter, both heat transfer and friction loss in the assembly increase. The design with higher heat transfer on the Pareto-optimal curve shows not only a lower maximum temperature but also a more uniform temperature distribution on the cross section of the assembly in comparison with the other designs.