ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Sean O’Brien, John Mattingly, Dmitriy Anistratov
Nuclear Science and Engineering | Volume 185 | Number 3 | March 2017 | Pages 406-425
Technical Paper | doi.org/10.1080/00295639.2016.1272988
Articles are hosted by Taylor and Francis Online.
It is frequently important to estimate the uncertainty and sensitivity of measured and computed detector responses in subcritical experiments and simulations. These uncertainties arise from the physical construction of the experiment, uncertainties in the transport parameters, and counting uncertainties. Perturbation theory enables sensitivity analysis (SA) and uncertainty quantification on integral quantities like detector responses. The aim of our work is to apply SA to the statistics of subcritical neutron multiplicity counting distributions. Current SA methods have only been applied to mean detector responses and the keff eigenvalue. For multiplicity counting experiments, knowledge of the higher-order counting moments and their uncertainties are essential for a complete SA. We apply perturbation theory to compute the sensitivity of neutron multiplicity counting moments to arbitrarily high order. Each moment is determined by solving an adjoint transport equation with a source term that is a function of the adjoint solutions for lower-order moments. This enables moments of arbitrarily high order to be sequentially determined, and it shows that each moment is sensitive to the uncertainties of all lower-order moments. To close our SA of the moments, we derive forward transport equations that are functions of the forward flux and lower-order moment adjoint fluxes. We verify our calculations for the first three moments by comparison with multiplicity counting measurements of a subcritical plutonium metal sphere. For the first three moments, the most influential parameters are ranked, and the validity of first-order perturbation theory is demonstrated by examining the series truncation error. This enables a detailed SA of subcritical multiplicity counting measurements of fissionable material based on transport theory.