ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jie Liu, Lihua Chi, Wang QingLin, Gong Chunye, Jiang Jie, Gan Xinbiao, Li Shengguo, Qingfeng Hu, Tom Masterson
Nuclear Science and Engineering | Volume 184 | Number 4 | December 2016 | Pages 527-536
Technical Paper | doi.org/10.13182/NSE15-53
Articles are hosted by Taylor and Francis Online.
Sweep scheduling methods used in particle transport problems belong to the class of precedence-constrained scheduling problems that are NP-complete. It is difficult to schedule local tasks for this type of transport problem and simultaneously optimize computational performance and parallel processor communication. In this paper, we present a parallel spatial-domain-decomposition algorithm to divide the tasks among the available processors. We also present a new algorithm for scheduling tasks within each processor. The scheduling algorithm has the required data and does not need to communicate with any other processor. This algorithm optimizes and assigns task priorities within the processor. Computational tasks whose results are required by another processor receive the highest priority. We combined these two algorithms to solve two-dimensional particle transport equations on unstructured grids. Our results show good performance and scalability up to 16 384 processors on the TianHe-2 supercomputer.