ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
David L. Aumiller, Jeffrey W. Lane
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 463-471
Technical Paper | doi.org/10.13182/NSE16-12
Articles are hosted by Taylor and Francis Online.
COBRA-IE is a three-field subchannel analysis code that was originally based on the COBRA-TF code series. The default interfacial drag model in COBRA-IE has been assessed against a wide range of pressure drop data taken in confined geometries and has been shown to perform very well. The difference in interfacial drag behavior for confined flow paths compared to large open regions where the bubbles are not constrained by the physical geometry of the flow path has been well documented in the open literature. Therefore, a dedicated interfacial drag model for large, open regions has been developed and implemented in COBRA-IE. This alternative interfacial drag model is based on the drift flux formulation and is activated by user input. A combination of the Kataoka-Ishii and the Zuber-Findley drift flux correlations has been implemented in COBRA-IE to calculate the weighted mean drift velocity and distribution parameter. The implementation of the model is described in this paper, and the interface functions to transition between the drift flux and two-fluid formulations are emphasized.
An assessment of the predictive capability of COBRA-IE for the transient level swell phenomena for the experiments performed by General Electric (GE) has been performed. Level swell is an important phenomenon for reactor safety analysis because it impacts water distribution within the reactor vessel during the blowdown phase of the transient as well as the residual inventory available to provide core cooling. The initial assessment of the code using the default interfacial drag modeling package showed an overprediction of the level swell and liquid carryover for the GE experiments, which is indicative of an overprediction of the interfacial drag for these situations. In addition to using the new code to reexamine the GE level swell experiment, assessments of the new model have been performed using the steady-state void fraction data collected in the Beattie-Sugawara and Smith experiments and are presented in this paper.