ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Mike Kramer: Navigating power deals in the new data economy
Mike Kramer has a background in finance, not engineering, but a combined 20 years at Exelon and Constellation and a key role in the deals that have Meta and Microsoft buying power from Constellation’s Clinton and Crane sites have made him something of a nuclear expert.
Kramer spoke with Nuclear News staff writer Susan Gallier in late August, just after a visit to Clinton in central Illinois to celebrate a power purchase agreement (PPA) with Meta that closed in June. As Constellation’s vice president for data economy strategy, Kramer was part of the deal-making—not just the celebration.
Stefan Meyer, Ivan Otic, Xu Cheng
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 377-387
Technical Paper | doi.org/10.13182/NSE16-6
Articles are hosted by Taylor and Francis Online.
In the framework of a description of melt pool heat transfer under severe accident conditions, we introduce a computational fluid dynamics approach for the phase change based on the phase-field method. The approach is derived using the formalism of irreversible thermodynamics and depends on a phenomenological expression for the free energy of binary eutectic alloys. The free energy is constructed to describe sharp interfaces on sufficiently small length scales and is capable of representing the appearance of mushy layers in a volume-averaged large-scale perspective. In particular, a dynamic calculation procedure for the diffuse interface width is introduced based on free energy minimization. Numerical simulations using this approach are performed and compared with experimental and numerical results from the literature. These comparisons demonstrate that the new model improves numerical simulation results and is able to describe the dynamics of sharp and diffuse interfaces.