ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Jan Peter Hessling
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 388-399
Technical Paper | doi.org/10.13182/NSE16-8
Articles are hosted by Taylor and Francis Online.
For evaluation of the uncertainty of nuclear power calculations, the Wilks approach has the appearance of an ideal tool. A conservatively estimated bound is obtained as the r’th most extreme model result, of a random sample of size determined by r. The methodology is noninvasive and simple and seems efficient and adequate. However, as this paper shows, these attributes come with a high price of large bias and substantial sampling variance. This jeopardizes its utilization as well as lowers its credibility and perceived efficiency. The unfortunate combination of random sampling and faithful estimation may result in a relative sampling uncertainty of the estimated bound(s) of no less than 100%. What is defined as credibility, i.e., the probability that the estimated bound is conservative relative to the true result, is well below the confidence relating the targeted bound(s) to the true result, which for the default application of the Wilks method translates into an expected failure rate of up to 10% (instead of 5%) of estimated bounds. To compensate for this deficit in credibility compared to the chosen level of confidence, adjustments of current practice are proposed. The application to modeling uncertainty is to be clearly distinguished from the original experimental sampling problem addressed by Wilks. Here, more is known but not utilized. A viable novel alternative based on so-called deterministic sampling with higher accuracy, precision, and efficiency will therefore be briefly discussed and illustrated.