ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Jan Peter Hessling
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 388-399
Technical Paper | doi.org/10.13182/NSE16-8
Articles are hosted by Taylor and Francis Online.
For evaluation of the uncertainty of nuclear power calculations, the Wilks approach has the appearance of an ideal tool. A conservatively estimated bound is obtained as the r’th most extreme model result, of a random sample of size determined by r. The methodology is noninvasive and simple and seems efficient and adequate. However, as this paper shows, these attributes come with a high price of large bias and substantial sampling variance. This jeopardizes its utilization as well as lowers its credibility and perceived efficiency. The unfortunate combination of random sampling and faithful estimation may result in a relative sampling uncertainty of the estimated bound(s) of no less than 100%. What is defined as credibility, i.e., the probability that the estimated bound is conservative relative to the true result, is well below the confidence relating the targeted bound(s) to the true result, which for the default application of the Wilks method translates into an expected failure rate of up to 10% (instead of 5%) of estimated bounds. To compensate for this deficit in credibility compared to the chosen level of confidence, adjustments of current practice are proposed. The application to modeling uncertainty is to be clearly distinguished from the original experimental sampling problem addressed by Wilks. Here, more is known but not utilized. A viable novel alternative based on so-called deterministic sampling with higher accuracy, precision, and efficiency will therefore be briefly discussed and illustrated.