ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tarek Zaki, Peter Yarsky
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 346-352
Technical Paper | doi.org/10.13182/NSE16-14
Articles are hosted by Taylor and Francis Online.
In a related paper (L. Cheng et al., “TRACE/PARCS Analysis of Anticipated Transient Without Scram with Instability for a MELLLA+ BWR/5,” Nucl. Technol. Vol. 196), the results of TRACE/PARCS calculations for representative anticipated transient without scram (ATWS) events leading to core instability (ATWS-I) were presented. In that analysis, instability onset was observed in response to changing plant conditions of power, flow, and feedwater temperature. The baseline calculations were performed without using a PARCS feature to simulate noise in the reactor.
When a simulated reactor is unstable but is in a steady-state condition, an analytical tool may not show the onset of instability because there would not be a perturbation to excite oscillation. Such a condition of artificial stability could not persist in an actual reactor where subtle variation of local conditions (e.g., void fraction) would provide a constant source of perturbation, or “noise.” The regulatory purpose of the current work is to study the reliability of the TRACE/PARCS prediction of instability onset and oscillation growth during ATWS-I by providing a source of noise in the simulation. In addition, the results of this study support a generic methodology recommendation for any future studies.
PARCS has a feature that can simulate the reactivity effect of perturbations in the local void fraction. This feature, referred to as the white noise feature, is used to provide an artificial source of constant, local perturbation that would more closely mimic the actual reactor condition where local void fractions are constantly changing. Sensitivity of the onset timing and growth was studied by varying the magnitude, frequency, and contour of the perturbations applied by the white noise feature.
The study concludes that the onset timing and growth of both the initial corewide and subsequent bimodal oscillation stabilized at a certain combination of perturbation magnitude, frequency range, and frequency resolution. With the appropriate range of these parameters, the instability onset occurs ~20 s earlier, and peak oscillation amplitude is achieved ~15 s earlier when compared to the baseline calculations. Given the importance of oscillation onset and growth on potential fuel damage, this study recommends a specific methodology with respect to white noise to ensure reliable prediction with TRACE/PARCS for future studies.