ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
M. Jarrett, B. Kochunas, A. Zhu, T. Downar
Nuclear Science and Engineering | Volume 184 | Number 2 | October 2016 | Pages 208-227
Technical Paper | doi.org/10.13182/NSE16-51
Articles are hosted by Taylor and Francis Online.
The coarse-mesh finite difference (CMFD) method is one of the most widely used methods for accelerating the convergence of numerical transport solutions. However, in some situations, iterative methods using CMFD can become unstable and fail to converge. We present and evaluate three different modifications of the CMFD scheme that provide enhanced stability: multiple transport sweeps, artificial diffusion, and relaxing the flux update. We present the Fourier analysis on each of these schemes for an idealized problem to characterize the stability and rate of convergence for both fixed-source and fission-source problems. Comparisons of the effectiveness of these methods are also performed numerically for a variety of benchmark boiling water reactor and pressurized water reactor problems using the Consortium for Advanced Simulation of Light Water Reactors neutronics code MPACT. We demonstrate a means of stabilizing CMFD by modifying the diffusion coefficient to make the iteration behave more like the partial-current CMFD (pCMFD) method, which is unconditionally stable, and show through a sequence of numerical experiments that the CMFD method performs similarly to the pCMFD method for the selected benchmark problems. We also show, both theoretically and experimentally, that modifying the diffusion coefficient in the CMFD equations is similar to underrelaxing the scalar flux update. The theoretical and experimental results show that many of the known techniques for stabilizing CMFD are fundamentally very closely related.