ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
M. J. Fleming, L. W. G. Morgan, E. Shwageraus
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 173-184
Technical Paper | doi.org/10.13182/NSE15-55
Articles are hosted by Taylor and Francis Online.
Modeling of nuclide densities as a function of time within magnetic confinement fusion devices such as the JET, ITER, and proposed DEMO tokamaks is performed using Monte Carlo transport codes coupled with a Bateman equation solver. The generation of reaction rates occurs through either pointwise interpolation of energy-dependent tracked particle data with nuclear data or multigroup (MG) convolution of binned fluxes with binned cross sections. The MG approach benefits from decreased computational expense and data portability, but introduces errors through effects such as self-shielding. Depending on the MG structure and nuclear data used, this method can introduce unacceptable errors without warning. We present a MG optimization method that utilizes a modified particle swarm algorithm to generate seed solutions for a nonstochastic string-tightening algorithm. This procedure has been used with a semihomogenized one-dimensional DEMO-like reactor design to produce an optimized energy group structure for tritium breeding. In this example, the errors introduced by the Vitamin-J 175 MG are reduced by two orders of magnitude in the optimized group structure.