ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
M. J. Fleming, L. W. G. Morgan, E. Shwageraus
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 173-184
Technical Paper | doi.org/10.13182/NSE15-55
Articles are hosted by Taylor and Francis Online.
Modeling of nuclide densities as a function of time within magnetic confinement fusion devices such as the JET, ITER, and proposed DEMO tokamaks is performed using Monte Carlo transport codes coupled with a Bateman equation solver. The generation of reaction rates occurs through either pointwise interpolation of energy-dependent tracked particle data with nuclear data or multigroup (MG) convolution of binned fluxes with binned cross sections. The MG approach benefits from decreased computational expense and data portability, but introduces errors through effects such as self-shielding. Depending on the MG structure and nuclear data used, this method can introduce unacceptable errors without warning. We present a MG optimization method that utilizes a modified particle swarm algorithm to generate seed solutions for a nonstochastic string-tightening algorithm. This procedure has been used with a semihomogenized one-dimensional DEMO-like reactor design to produce an optimized energy group structure for tritium breeding. In this example, the errors introduced by the Vitamin-J 175 MG are reduced by two orders of magnitude in the optimized group structure.