ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
Richard Sanchez, Simone Santandrea
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 196-213
Technical Paper | doi.org/10.13182/NSE15-78
Articles are hosted by Taylor and Francis Online.
A conservative linear surface approximation (CLS) has been recently introduced to speed up the method of characteristics in unstructured meshes. In this work, we present an analysis of the convergence of the CLS in unstructured geometries, which shows that, under optimal conditions, the method converges quadratically with the size of the regions, while the classical step characteristics approximation converges linearly. The predicted convergence rates apply only to a homogeneous convex domain with a regular boundary and regular sources and can be viewed as upper bounds for realistic heterogeneous cases. We also analyze the errors induced by the numerical implementation of the step and CLS approximations and show their impact in the final error. Numerical calculations illustrate the convergence rates.