ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Andrew J. Hummel, Todd S. Palmer
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 149-159
Technical Note | doi.org/10.13182/NSE15-37
Articles are hosted by Taylor and Francis Online.
The most widely used and versatile medical radioisotope today is 99mTc. Roughly 30 million people depend on this radioisotope for diagnostic imaging procedures each year, and this demand is expected to grow. Although there are numerous ways of producing this isotope, the most common is from fission product 99Mo, which is produced in all nuclear reactors fueled with 235U as a fission fragment with a yield of around 6.1%. Molybdenum-99 has a half-life of just over 2.5 days, and it will decay to 99mTc 87% of the time. The Reduced Enrichment for Research Test Reactors program was established at Argonne National Laboratory in 1978 to investigate technology that would aid in converting highly enriched uranium (HEU) facilities to low-enriched uranium (LEU) fuel. Since the majority of all 99Mo produced currently comes from the irradiation of HEU fuel targets, there has been a growing effort to design LEU targets that can yield comparable quantities of high specific activity 99Mo. Recently, a novel LEU target design has been developed for use in TRIGA reactors for the production of 99Mo. The simulation tool MCNP5 was used to examine the neutronic behavior of multiple core configurations fueled solely with this new target.