ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
M. Souli, A. V. Kultsep, E. Al-Bahkali, C. C. Pain, M. Moatamedi
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 126-134
Technical Paper | doi.org/10.13182/NSE15-63
Articles are hosted by Taylor and Francis Online.
Fluid-structure interaction plays an important role in nuclear engineering design, where several numerical and experimental tests need to be performed on new tank design before getting into the production process. The design can be performed for fluid storage tanks that require knowledge of sloshing frequencies and hydrodynamic pressure distribution on the structure. These can be very useful for engineers and designers to define appropriate material properties and shell thickness of the structure to be resistant under seismic loading. Data presented in current tank seismic design codes such as Eurocode are based on simplified assumptions for the geometry and material tank properties. Fuel tanks may undergo different types of loading, including seismic loading, where the behavior of storage tanks includes material nonlinearities, which are caused by material yielding. The Arbitrary Lagrangian Eulerian formulation based on finite element analysis presented in the paper takes into account material properties of the structure as well as the complex geometry of the tank. The formulation uses a moving mesh with a mesh velocity defined through the structure motion. In this paper, we use different approaches to solve a fluid-structure coupling problem. The first one uses the full Navier-Stokes equation for the fluid with projection method, and the second approach uses potential flow theory. The problem consists of a sloshing deformable tank submitted to acceleration loading.