ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Souli, A. V. Kultsep, E. Al-Bahkali, C. C. Pain, M. Moatamedi
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 126-134
Technical Paper | doi.org/10.13182/NSE15-63
Articles are hosted by Taylor and Francis Online.
Fluid-structure interaction plays an important role in nuclear engineering design, where several numerical and experimental tests need to be performed on new tank design before getting into the production process. The design can be performed for fluid storage tanks that require knowledge of sloshing frequencies and hydrodynamic pressure distribution on the structure. These can be very useful for engineers and designers to define appropriate material properties and shell thickness of the structure to be resistant under seismic loading. Data presented in current tank seismic design codes such as Eurocode are based on simplified assumptions for the geometry and material tank properties. Fuel tanks may undergo different types of loading, including seismic loading, where the behavior of storage tanks includes material nonlinearities, which are caused by material yielding. The Arbitrary Lagrangian Eulerian formulation based on finite element analysis presented in the paper takes into account material properties of the structure as well as the complex geometry of the tank. The formulation uses a moving mesh with a mesh velocity defined through the structure motion. In this paper, we use different approaches to solve a fluid-structure coupling problem. The first one uses the full Navier-Stokes equation for the fluid with projection method, and the second approach uses potential flow theory. The problem consists of a sloshing deformable tank submitted to acceleration loading.