ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Christopher M. Perfetti, Bradley T. Rearden, William R. Martin
Nuclear Science and Engineering | Volume 182 | Number 3 | March 2016 | Pages 332-353
Technical Paper | doi.org/10.13182/NSE15-12
Articles are hosted by Taylor and Francis Online.
The need to model geometrically complex systems with improved ease of use and fidelity and the desire to extend the Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) analysis to advanced applications have motivated the development of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance CHaracterization (CLUTCH) and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE KENO framework of the SCALE code system to enable TSUNAMI-3D to perform eigenvalue sensitivity calculations using CE Monte Carlo methods. This paper provides a detailed description of the theory behind the CLUTCH method and describes in detail its implementation. This work also explores the improvements in eigenvalue sensitivity coefficient accuracy that can be gained through use of CE sensitivity methods and compares several sensitivity methods in terms of computational efficiency and memory requirements. The IFP and CLUTCH methods produced sensitivity coefficient estimates that matched, and in some cases exceeded, the accuracy of those produced using the multigroup TSUNAMI-3D approach. The CLUTCH method was found to calculate sensitivity coefficients with the highest degree of efficiency and the lowest computational memory footprint for the problems examined.