ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Christopher M. Perfetti, Bradley T. Rearden, William R. Martin
Nuclear Science and Engineering | Volume 182 | Number 3 | March 2016 | Pages 332-353
Technical Paper | doi.org/10.13182/NSE15-12
Articles are hosted by Taylor and Francis Online.
The need to model geometrically complex systems with improved ease of use and fidelity and the desire to extend the Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) analysis to advanced applications have motivated the development of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance CHaracterization (CLUTCH) and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE KENO framework of the SCALE code system to enable TSUNAMI-3D to perform eigenvalue sensitivity calculations using CE Monte Carlo methods. This paper provides a detailed description of the theory behind the CLUTCH method and describes in detail its implementation. This work also explores the improvements in eigenvalue sensitivity coefficient accuracy that can be gained through use of CE sensitivity methods and compares several sensitivity methods in terms of computational efficiency and memory requirements. The IFP and CLUTCH methods produced sensitivity coefficient estimates that matched, and in some cases exceeded, the accuracy of those produced using the multigroup TSUNAMI-3D approach. The CLUTCH method was found to calculate sensitivity coefficients with the highest degree of efficiency and the lowest computational memory footprint for the problems examined.