ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Nathan E. White, Sudarshan K. Loyalka
Nuclear Science and Engineering | Volume 181 | Number 3 | November 2015 | Pages 318-330
Technical Paper | doi.org/10.13182/NSE15-10
Articles are hosted by Taylor and Francis Online.
In high-temperature gas-cooled reactors (HTGRs), carbonaceous dust can be generated both during normal operations and during accidents. The dust particles can be highly irregular and highly porous and have very large surface areas that may make dust-facilitated (or dust-hindered) fission product (FP) transport a major factor. Since the FP interactions with dust can occur while the dust is on a surface as well as in suspension, there is a need to obtain computational and experimental results for both situations. In 2014, Smith and Loyalka used the Green's Function Method to study condensation (results for absorption/deposition and evaporation are generally directly related to the condensation problem) on chainlike particles and particle agglomerates in the diffusion regime. In 2010, Smith and Loyalka made progress in computation of evaporation/condensation particles on a surface, but again in the diffusion regime. Since the particle sizes of interest span a wide range—from nanometers to microns (10−9 m to 10−6 m)—and are also porous with small pores and pathways for FPs, these computations need to be extended to the transport regime where the particle sizes (and/or pores) are comparable to the vapor (FP) molecular mean free path (∼0.05 μm) in the gaseous phase (air or helium, or some mix thereof with other contaminants). The focus of the present paper is on Monte Carlo computation of condensation rate on chainlike particles and particle agglomerates in the transport regime using the one-speed approximation, and we report a number of new results that provide new insights and path for future explorations.