ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Jeremy A. Roberts, Matthew S. Everson, Benoit Forget
Nuclear Science and Engineering | Volume 181 | Number 3 | November 2015 | Pages 331-341
Technical Paper | doi.org/10.13182/NSE14-132
Articles are hosted by Taylor and Francis Online.
A study of the convergence behavior of the eigenvalue response matrix method (ERMM) for nuclear reactor eigenvalue problems is presented. The eigenvalue response matrix equations are traditionally solved by a two-level iterative scheme in which an inner eigenproblem yields particle balance across node boundaries and an outer fixed-point iteration updates the global k-eigenvalue. Past work has shown the method converges rapidly, but the properties of its convergence have not been studied in detail. To perform a formal assessment of these properties, the one-dimensional, one-group diffusion approximation is used to derive the asymptotic error constant of the fixed-point iteration. Several problems are solved numerically, and the observed convergence behavior is compared to the analytic model based on buckling and nodal dimensions (in mean free paths). The results confirm the method converges quickly, with no degradation in the convergence rate for small nodes, which is an observation that suggests ERMM can be used for large-scale, parallel computations with no penalty from the decomposition of a domain into smaller nodes. In addition, results from multigroup problems show that convergence depends strongly on the heterogeneity and the energy representation of a model. In particular, the convergence for two-group and heterogeneous, one-group models is substantially slower than for the homogeneous, one-group model.