ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Mike Kramer: Navigating power deals in the new data economy
Mike Kramer has a background in finance, not engineering, but a combined 20 years at Exelon and Constellation and a key role in the deals that have Meta and Microsoft buying power from Constellation’s Clinton and Crane sites have made him something of a nuclear expert.
Kramer spoke with Nuclear News staff writer Susan Gallier in late August, just after a visit to Clinton in central Illinois to celebrate a power purchase agreement (PPA) with Meta that closed in June. As Constellation’s vice president for data economy strategy, Kramer was part of the deal-making—not just the celebration.
Jeremy A. Roberts, Matthew S. Everson, Benoit Forget
Nuclear Science and Engineering | Volume 181 | Number 3 | November 2015 | Pages 331-341
Technical Paper | doi.org/10.13182/NSE14-132
Articles are hosted by Taylor and Francis Online.
A study of the convergence behavior of the eigenvalue response matrix method (ERMM) for nuclear reactor eigenvalue problems is presented. The eigenvalue response matrix equations are traditionally solved by a two-level iterative scheme in which an inner eigenproblem yields particle balance across node boundaries and an outer fixed-point iteration updates the global k-eigenvalue. Past work has shown the method converges rapidly, but the properties of its convergence have not been studied in detail. To perform a formal assessment of these properties, the one-dimensional, one-group diffusion approximation is used to derive the asymptotic error constant of the fixed-point iteration. Several problems are solved numerically, and the observed convergence behavior is compared to the analytic model based on buckling and nodal dimensions (in mean free paths). The results confirm the method converges quickly, with no degradation in the convergence rate for small nodes, which is an observation that suggests ERMM can be used for large-scale, parallel computations with no penalty from the decomposition of a domain into smaller nodes. In addition, results from multigroup problems show that convergence depends strongly on the heterogeneity and the energy representation of a model. In particular, the convergence for two-group and heterogeneous, one-group models is substantially slower than for the homogeneous, one-group model.