ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
A. Tudora, F.-J. Hambsch, S. Oberstedt, G. Giubega, I. Visan
Nuclear Science and Engineering | Volume 181 | Number 3 | November 2015 | Pages 289-301
Technical Paper | doi.org/10.13182/NSE14-108
Articles are hosted by Taylor and Francis Online.
The Point-by-Point (PbP) model as well as the related computer code is a useful tool to provide different prompt emission data [as a function of fragment mass A, fragment charge Z, total kinetic energy (TKE), and total average ones]. The present work focuses on the sensitivity of prompt neutron multiplicity to different properties of the fission fragments. In the construction of the fragmentation range of the PbP treatment, the use of different Z prescriptions affects the multiparametric matrices of different fragment and prompt emission quantities q(A,Z,TKE). The nonnegligible influence of how the most probable charge is considered (as unchanged charge distribution without or with the charge deviations ΔZ as a function of A or an average ΔZ value), as well as the number of Z taken at each A, is discussed. The calculated average prompt emission quantities as a function of A, as a function of TKE, and total average ones depend on the accuracy of experimental Y(A,TKE) distributions. The prompt neutron multiplicity of complementary fragments νpair (A) has a weak dependence on the total excitation energy (TXE) partition between complementary fully accelerated fragments. This assures a good prediction of the average prompt neutron multiplicity as a function of TKE and of the total average one even in the case of a rough or inappropriate TXE partition. The systematic behavior revealed by the experimental ratio νH/νpair as a function of AH together with the weak dependence of νpair(A) on the TXE partition can be exploited—in the absence of experimental ν(A) information—for an indirect verification of predicted ν(A).