ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
A. Tudora, F.-J. Hambsch, S. Oberstedt, G. Giubega, I. Visan
Nuclear Science and Engineering | Volume 181 | Number 3 | November 2015 | Pages 289-301
Technical Paper | doi.org/10.13182/NSE14-108
Articles are hosted by Taylor and Francis Online.
The Point-by-Point (PbP) model as well as the related computer code is a useful tool to provide different prompt emission data [as a function of fragment mass A, fragment charge Z, total kinetic energy (TKE), and total average ones]. The present work focuses on the sensitivity of prompt neutron multiplicity to different properties of the fission fragments. In the construction of the fragmentation range of the PbP treatment, the use of different Z prescriptions affects the multiparametric matrices of different fragment and prompt emission quantities q(A,Z,TKE). The nonnegligible influence of how the most probable charge is considered (as unchanged charge distribution without or with the charge deviations ΔZ as a function of A or an average ΔZ value), as well as the number of Z taken at each A, is discussed. The calculated average prompt emission quantities as a function of A, as a function of TKE, and total average ones depend on the accuracy of experimental Y(A,TKE) distributions. The prompt neutron multiplicity of complementary fragments νpair (A) has a weak dependence on the total excitation energy (TXE) partition between complementary fully accelerated fragments. This assures a good prediction of the average prompt neutron multiplicity as a function of TKE and of the total average one even in the case of a rough or inappropriate TXE partition. The systematic behavior revealed by the experimental ratio νH/νpair as a function of AH together with the weak dependence of νpair(A) on the TXE partition can be exploited—in the absence of experimental ν(A) information—for an indirect verification of predicted ν(A).