ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Motomasa Fuse, Makoto Nagase, Naoshi Usui, Yoshiteru Sato, Motohiro Aizawa, Tsuyoshi Ito, Hideyuki Hosokawa, Yoichi Wada, Kazushige Ishida
Nuclear Science and Engineering | Volume 181 | Number 2 | October 2015 | Pages 175-190
Technical Paper | doi.org/10.13182/NSE14-101
Articles are hosted by Taylor and Francis Online.
While under normal water chemistry without any specific metal ions in reactor coolant a high electrochemical corrosion potential caused by highly oxidizing species such as hydrogen peroxide promotes the formation of hematite film on piping surfaces with a densely packed film structure, the presence of a certain amount of nickel ions prevents the magnetite film from changing to hematite by forming a nickel ferrite. This formation of nickel ferrite instead of hematite accelerates cobalt buildup, and this is especially notable for carbon steel. The observed reduction of radioactivity concentration in reactor water by zinc injection or by nickel/iron ratio control can be explained by the role of zinc or nickel in preventing the film on the fuel rod surfaces from changing to hematite, thereby stabilizing the cobalt activity on this surface. A thermodynamic evaluation suggests that zinc ferrite is more stable than cobalt ferrite only when the ratio of cobalt to zinc divalent ions, [Co2+]/[Zn2+], is <0.011 in molar units. This ratio is consistent with the ratio of 60Co activity to zinc concentration commonly used in industry to control reactor water zinc levels for a dose rate reduction under the hydrogen water chemistry condition. Based on the present understanding of radioactivity behaviors, the actual radiation dose reduction methods are classified into the several groups and summarized from the viewpoint of the interaction between the oxide and various metal ions.