ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Jeffrey E. Seifried, Ehud Greenspan
Nuclear Science and Engineering | Volume 181 | Number 1 | September 2015 | Pages 82-95
Technical Paper | doi.org/10.13182/NSE14-104
Articles are hosted by Taylor and Francis Online.
An expression is derived for attributing the reactivity response due to perturbations to spectral, spatial, and isotopic effects. It is shown to be consistent at a global level with similar expressions derived in previous work but can provide more detailed information on the physics phenomena contributing to the reactivity response of the perturbation. Using this expression, the reactivity effect of local coolant density perturbations [local void coefficient of reactivity (VCR)] is studied for two reduced-moderation boiling water reactor (RBWR) core designs—the thorium-fueled RBWR (RBWR-Th) and the uranium-fueled RBWR (RBWR-AC)—as well as for a standard advanced boiling water reactor (ABWR). The RBWR core designs feature large axial variation in their neutron spectra.
The axial distribution of local VCR along the RBWR-Th seed and along the ABWR core were found to have the same general shape: negative throughout but most negative near the bottom and asymptotically approaching zero toward the top. However, the RBWR-Th VCR is roughly four times more negative. The RBWR-AC local VCR axial distribution varies greatly: it is very close to zero in the seed regions and has a significant positive component in the central blanket.
Three effects were identified as contributing to the VCR due to a local water density change in the lower part of the RBWR-Th seed: local spectrum hardening that tends to increase the local reproduction factor (ηr) of each of the fuel isotopes; a redistribution of the local neutron absorption between the fuel isotopes resulting in a shift of absorptions from higher to lower isotopic reproduction factors and, hence, to a reactivity loss; and an axial flux tilt across the core from axial zones of higher ηr to axial zones of lower ηr, which makes another negative contribution to the reactivity worth of the perturbation.